Duality in random matrix ensembles for all β
نویسندگان
چکیده
منابع مشابه
Duality in Random Matrix Ensembles for All Β
Gaussian and Chiral β-Ensembles, which generalise well known orthogonal (β = 1), unitary (β = 2), and symplectic (β = 4) ensembles of random Hermitian matrices, are considered. Averages are shown to satisfy duality relations like {β,N, n} ⇔ {4/β, n,N} for all β > 0, where N and n respectively denote the number of eigenvalues and products of characteristic polynomials. At the edge of the spectru...
متن کاملq-RANDOM MATRIX ENSEMBLES
With a few notable exceptions, the interaction between the community of mathematicians who work in special functions, in particular, those that are in the area of q-series and basic Hypergeometric functions and the physics community has so far been minimal. In this review article, we will describe some developments in one area in physics, namely the Theory of Random Matrix Ensembles, where a q-...
متن کاملMultifractal dimensions for all moments for certain critical random-matrix ensembles in the strong multifractality regime.
We construct perturbation series for the qth moment of eigenfunctions of various critical random-matrix ensembles in the strong multifractality regime close to localization. Contrary to previous investigations, our results are valid in the region q<1/2. Our findings allow one to verify, at first leading orders in the strong multifractality limit, the symmetry relation for anomalous fractal dime...
متن کاملNew Multicritical Random Matrix Ensembles
In this paper we construct a class of random matrix ensembles labelled by a real parameter α ∈ (0, 1), whose eigenvalue density near zero behaves like |x|α. The eigenvalue spacing near zero scales like 1/N1/(1+α) and thus these ensembles are representatives of a continous series of new universality classes. We study these ensembles both in the bulk and on the scale of eigenvalue spacing. In the...
متن کاملRandom–Matrix Ensembles for Semi–Separable Systems
– Many models for chaotic systems consist of joining two integrable systems with incompatible constants of motion. The quantum counterparts of such models have a propagator which factorizes into two integrable parts. Each part can be diagonalized. The two eigenvector bases are related by an orthogonal (or unitary) transformation. We construct a random matrix ensemble that mimics this situation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 2009
ISSN: 0550-3213
DOI: 10.1016/j.nuclphysb.2009.02.019